APBC Chapter Homework Assignment **Name:**

APBC Competition Review HW

Due on _____ (day AFTER competition) at the end of class.

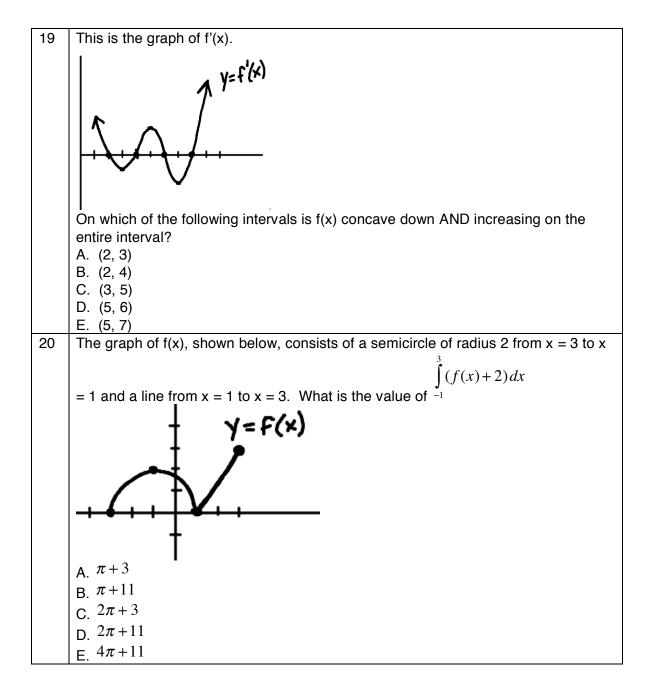
<u>Directions</u>: Use this sheet as a cover sheet for your homework assignment. If you do not staple this cover sheet to the front of your assignment, you will receive a zero. You may submit your HW early but NO LATE HW will be accepted.

Assignment:

Do all problems (team and individual) from the following competitions: 2013 and 2014

REMEMBER, THIS CALCULUS COMPETITION WILL COUNT AS AN EXAM FOR YOU. YOUR TEAM SCORE WILL BE ADDED TO YOUR INDIVIDUAL SCORE.

Grading:


Item	Possible Points	Score
All Problems Completed	2	
Problems Labeled and in Numerical Order, Page Numbers are Labeled	2	
First Random Problem (correct with sufficient work)	4	
Second Random Problem (correct with sufficient work)	4	
Third Random Problem (correct with sufficient work)	4	
Fourth Random Problem (correct with sufficient work)	4	
TOTAL	20	

Name:		School:	Team:
Indiv	vidual Round: (Non-Calculator)		
1	$y = (\sin x)^x$, find y'.		
	A. $y' = x \cot x + \ln(\sin x)$		
	B. $y' = x(\sin x)^{x-1}$		
	C. $y' = x(\sin x)^{x-1} * \cos x$		
	D. $y' = (\sin x)^x [x \cot x + \ln(\sin x)]$)]	
	$E. \ y' = \ln(\sin x)^* (\sin x)^x$		
2	$F(x) = \int_{-\infty}^{\infty} t^3 dt$		
	F'(x) =		
	$A. F'(x) = 3\tan^2 x$		
	B. $F'(x) = 3\tan^2 x \sec^2 x$		
	C. $F'(x) = -3\tan^2 x \sec^2 x$		
	D. $F'(x) = -\tan^3 x \sec^2 x$		
	E. $F'(x) = \tan^3 x \sec^2 x$		
3	What is the area of the region b	bound by $y = x^3 - 2x^2 - 4x + 8$ and the x-ax	is?
	B44/3		
	C. 20/3		
	D. 44/3		
4	E. 64/3	p_{1} approximation of $p(t) = 10t - 0.4$. What is	the total
4	distance traveled by the particle	n acceleration of $a(t) = 12t - 24$. What is a from $t = 0$ to $t = 5$?	ine iolai
	A64		
	B50		
	C. 50 D. 64		
	E. 78		
5		a building. The base of the ladder is beir	ng pulled
		of 2 ft/sec. At the moment when the bas	
		g, at what SPEED is the top of the ladder	sliding
	DOWN the wall? A14/25 ft/sec		
	B7/12 ft/sec		
	C7/24 ft/sec		
	D. 7/12 ft/sec		
	E. 7/24 ft/sec		

6	Using the table provided use the trapezoidal approximation (with 3 trapezoids) to estimate the area under the curve of $f(x)$ from $x = 0$ to $x = 8$. x $f(x)$ 0 2 3 1 5 7 8 10
	A. 28 B. 112/3 C. 38 D. 42 E. 76
7	$\lim_{n \to 0} \frac{\tan(x+n) - \tan x}{n} =$ A. 0 B. undefined C. $\tan x$ D. $\sec^2 x$ E. $-\ln \cos x $
8	A farmer has 48 feet of fencing. He would like to use all of this fencing to create the biggest possible rectangular grazing area for his horses but plans to construct the enclosure so that one side of the rectangle is the existing wall of a barn. What is the maximal area that he can create? A. 12 ft ² B. 24 ft ² C. 144 ft ² D. 256 ft ² E. 288 ft ²
9	What best describes the function $f(x) = x^3 - 3x^2 - 45x + 135$ on the interval $1 < x < 2$. A. Decreasing, concave up, positive B. Decreasing, concave up, negative C. Decreasing, concave down, negative D. Increasing, concave up, positive E. Increasing, concave down, negative
10	What is the minimum value of f(x) = $2\cos x - x$ on the interval [0, 2pi)? A. $\frac{7\pi}{6}$ B. $\sqrt{3} - \frac{7\pi}{6}$ C. $\sqrt{3} - \frac{11\pi}{6}$ D. $-\sqrt{3} - \frac{7\pi}{6}$ E. -1

11	1 12
1.1	If $\frac{d}{dx}f(x) = g(x^4)$ and $\frac{d}{dx}g(x) = f(2x)$, then $\frac{d^2}{dx^2}f(x^3) =$
	If ax and ax , then ax
	A. $3x^2g(x^{12})$
	B. $6xg(x^{12}) + 36x^{13}f(2x^{12})$
	$c^{-36x^{13}f(2x^{12})}$
	$\sum_{n=1}^{\infty} 6xg(x^{12}) + 36x^{13}f(x^{36})$
	E. $f(2x^{12})$
12	If $h(x) = f(g(x))$, use the given table to find h'(2).
	x = f(x) = g(x) = f'(x) = g'(x)
	1 0 4 1 -3
	2 6 3 -2 2 3 1 0 5 7
	A4 B2
	C. 2
	D. 6 E. 10
13	
	$f(x) = \frac{x^4 + 3x^2}{\sqrt{2x + 3}}$
	Find f'(x).
	$\frac{4x^3+6x}{\sqrt{2}}$
	A. $\sqrt{2}$
	$\sqrt{2x+3}\left[\left(4x^3+6x\right)-(x^4+3x^2)\right]$
	B. $2x+3$
	$\frac{7x^4 + 12x^3 + 9x^2 + 18x}{10x^2 + 18x}$
	C. $(2x+3)^{3/2}$
	$\left[\left(4x^3 + 6x \right) - \left(x^4 + 3x^2 \right) \right]$
	D. $\frac{\left[\left(4x^3 + 6x\right) - (x^4 + 3x^2)\right]}{\sqrt{2x + 3}}$
	$-x^4 + 4x^3 - 3x^2 - 6x$
	E. $2x+3$
14	What values, c, satisfy the Mean Value Theorem for derivatives for $f(x) = x^3$.
	$f(x) = x^3 - 5x + 13$ on the open interval (0, 2)? 2 2 2 2 2 2 2 2
	$\frac{2}{A} - \frac{2}{\sqrt{3}} = \frac{2}{\sqrt$
	D. 4/3 and -4/3 E. 4/3, -4/3, and 1

15	$f(x) = \frac{10}{\sqrt{x}}$
	What is the average value of $f(x)$ on the interval [4, 9]?
	A. 25/6
	B. 4 C. 25/3
	D. 2ln(9/4)
	E. 20
16	$\int \sqrt[3]{\cos x} \sin x dx$
	A. $\frac{3}{4}(\cos x)^{3/4} + C$
	B. $-\frac{3}{4}(\cos x)^{4/3} + C$
	C. $\frac{3}{4}(\cos x)^{4/3} + C$
	$-\frac{2}{3}(\cos x)^{3/2} + C$
	$\frac{1}{2}$ () ^{3/2} 2
	E. $\frac{2}{3}(\cos x)^{3/2} + C$
17	$\int \frac{dx}{\sqrt{49 - 4x^2}}$
	$A_{\text{A}} = \frac{1}{2} \arcsin\left(\frac{2x}{7}\right) + C$
	$\frac{1}{7} \arcsin\left(\frac{2x}{7}\right) + C$
	$\operatorname{arcsin}\left(\frac{x}{7}\right) + C$
	D. $2\sqrt{49-4x^2} + C$
	D. $2\sqrt{49-4x^2} + C$ E. $2\ln(49-4x^2) + C$
18	
18	E. $2\ln(49-4x^2)+C$ A particle moves along the x-axis such that it's position is modeled by the equation $x(t) = t^3 - 6t^2 - 15t + 3$ for all $t \ge 0$. What is the velocity of the particle when its

<u>Free Response</u>: The acceleration of a particle moving along the x-axis is given by a(t) = 6t - 4 for all t > 0. At time t = 1, the position of the particle is -2 and the particle is at rest.

A. During what time interval(s) is the particle moving to the left?

B. What is the total distance traveled by the particle in the interval [0, 4]?

C. During what times intervals is the **speed** of the particle decreasing?

Team Round Questions

Question 1: (3 minutes)

 $\int 4x^2 \cos(x^3 + 3) dx =$

Question 2: (3 minutes)

A particle moves along the x-axis so that its velocity at time t (where $0 \le t < 2$) is given

 $v(t) = \frac{1}{\sqrt{4-t^2}}.$

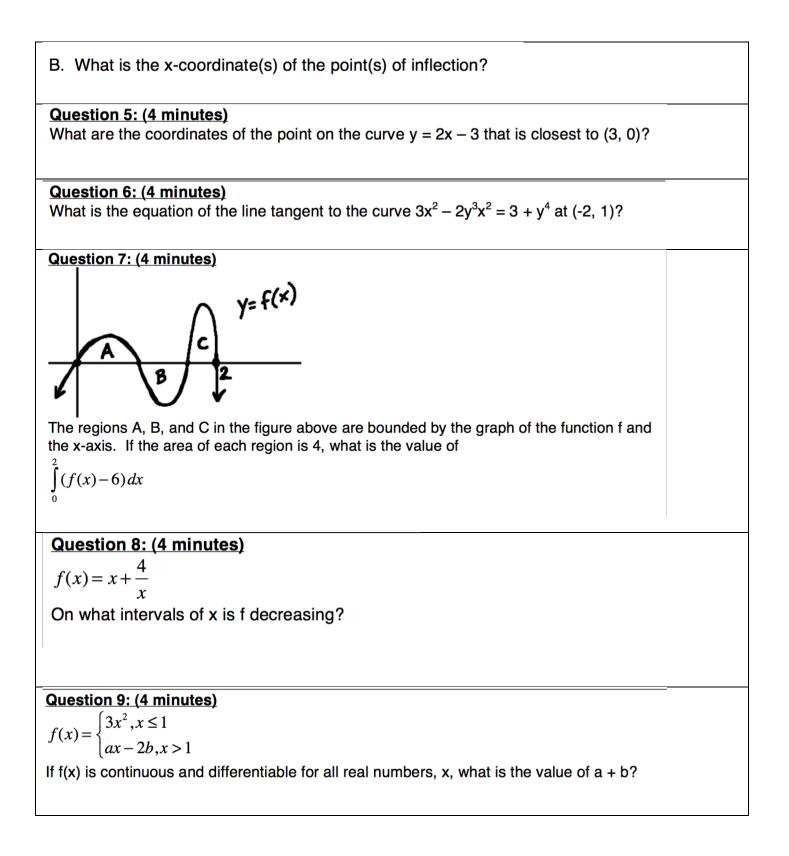
 $x(1) = \frac{\pi}{6} + 2$

Given that

A. Write an expression for the position, x(t), of the particle at time t.

B. Write an expression for the acceleration, a(t), of the particle at time t.

Question 3: (3 minutes)


Given $f(x) = e^{x^2 + 5x}$, find f'(2).

Question 4: (3 minutes)

The derivative, g'(x), and the second derivative, g''(x), of a function, g(x), are continuous and each have exactly two zeros. Selected values of both derivatives are given in the table below.

ſ	x	- 4	- 3	- 2	- 1	0	1	2	3	4
	g'(x)	- 3	- 2	0	1	2	0	1	3	5
	g"(x)	2	0	- 1	- 3	0	2	4	5	6

A. If the domain of g(x) is the set of all real numbers, on what interval(s) is g(x) BOTH increasing and concave up?

Individu	ndividual Exam (Answers)				
1	D				
2	D				
3	E				
4	E				
5	D				
6	С				
7	D				
8	E				
9	Α				
10	D				
11	В				
12	E				
13	B (answer looks like it lines up with B but it is the 3rd answer. It's C.				
14	C				
15	В				
16	В				
17	Α				
18	В				
19	D				
20	В				
21FR	A. (1/3, 1)				
	B. 980/27				
	C. [0, 1/3) U (2/3, 1)				
	Round (Answers)				
1	$(4/3)\sin(x^3+3)+C$				
2	A. $x(t) = \arcsin(t/2) + 2$				
	B. $t/(4-t^2)^{(3/2)}$				
3	9e ¹⁴				
4	A. (0,1)U(1, inf)				
	B. $x=-3, x=0$				
5	(9/5, 3/5)				
6	Y - 1 = (-1/7)(x + 2)				
7	-8				
8	(-2, 0)U(0, 2)				
9	15/2				

Name:		School:	Team:	
Individual Round: (Non-Calculator)				
1	$y = x^{\tan x}, \text{ find y'.}$ $A, y' = \tan x \cdot x^{\tan x - 1}$			
	B. $y' = \ln x \cdot x^{\tan x}$			
	C. $y' = x^{\tan x} \tan x + x^{\tan x} \ln x \cdot \sec x$			
	D. $y' = x^{\tan x - 1} \tan x + x^{\tan x} \ln x \cdot se$	$ec^2 x$		
	$y' = \frac{\tan x}{x} + \ln x \cdot \sec^2 x$ E.			
2	$F(x) = \int_{e^x}^{3} t^3 - 2t^2 dt$			
	F'(x) =			
	A. $-e^{4x} + 2e^{3x}$			
	B. $e^{4x} - 2e^{3x}$			
	C. $e^{3x} - 2e^{2x}$			
	D. $-e^{3x} + 2e^{2x}$			
3	E. $-e^{4x} + 2e^{3x} - 9$	$y = y^3 + y^2 + 9y + 9y$		
	What is the area of the region t axis?	bound by $y = x^3 - x^2 + 8x - 8$, $x = 2$, and t	the x-	
	4			
	A. $\overline{3}$			
	<u>65</u>			
	В. 12			
	C. 8			
	D. 12			
4	E. 16 A particle, initially at rest, has a	In acceleration of $a(t) = 18t - 6$. What is t	he total	
	distance traveled by the particle	e from t = 0 to t = 2?		
	$\frac{4}{3}$			
	A. $\frac{3}{104}$			
	$B. \frac{104}{9}$			
	112			
	C. $\frac{9}{9}$			
	D. 12			
	E. <u>116</u>			
	- 9			

5	A 26 ft ladder is leaning against a building. The base of the ladder is being pulled away from the building at a rate of 3/2 ft/sec. At the moment when the base of the ladder is 10 feet from the building, at what SPEED is the top of the ladder sliding down the wall? A. $-\frac{5}{8} ft/s$ B. $-\frac{5}{12} ft/s$ C. $\frac{5}{12} ft/s$ D. $\frac{5}{8} ft/s$ E. $\frac{323}{12} ft/s$
6	Use a trapezoidal approximation (n = 3) to estimate the area under the curve of $(n = 2)$
	$f(x) = x^2 - 3x + 2$ from $x = 0$ to $x = 6$.
	A. 30 B. 31
	C. 34
	D. 62
	E. 68
7	$\frac{3}{3} - \frac{3}{3}$
	$\lim_{n \to \infty} \frac{\overline{(x+n)^2} - \overline{x^2}}{\overline{x^2}} =$
	$n \rightarrow 0$ n
	A. undefined 3
	— —
	B. X
	C. 0
1	$-\frac{3}{2}$
1	D. x^2
	$-\frac{6}{3}$
	E. x^3
8	A farmer has 60 feet of fencing. He would like to use all of this fencing to create the biggest possible rectangular pen for his pigs. He plans to construct the
1	enclosure so that one side of the rectangle is the existing wall of a barn. What is
1	the maximal area that she can create?
	A. ¹⁵ <i>ft</i>
	B. ³⁰ <i>ft</i>
	C. $\frac{225 ft^2}{2}$
	C. $225 ft^2$ D. $450 ft^2$ E. $900 ft^2$
	$-900 ft^2$
	E. 2007

9	What best describes the function $f(x) = x^3 - 9x^2 + 24x - 216$ on the interval $4 < x < 5$? A. positive, increasing, and concave down B. negative, increasing, and concave up C. positive, increasing, and concave up
	 D. negative, decreasing, and concave down E. negative, decreasing, and concave up
10	What is the maximum value of $f(x) = x^3 - 3x^2 + 5$ on the interval $[-1,4]$? A. 0 B. 4 C. 5 D. 21 E. 24
11	If $\frac{d}{dx}f(x) = g(x^3)$ and $\frac{d}{dx}g(x) = f(4x)$, then $\frac{d^2}{dx^2}f(x^2) =$
	A. $2g(x^6) + 12x^6f(4x^6)$
	B. $6xg(x^3) + 9x^4f(4x^3)$
	C. $f(4x^6)$
	D. $24x^5f(4x^6)$
	E. $2xf(4x^6)$
12	$h(x) = \frac{f(x)}{g(x)}$, $h'(6) = 5$, and $g(x) = 3$, what is $f'(6) = ?$
	A. 0
	B. 2 C. 15
	D. 17
13	E. The given information is not sufficient to find $f'(6)$.
	$f(x) = \frac{x^2 - 8x}{\sqrt{x^3 + 2}}$ Find f'(x).
	A. $(4x-16)\sqrt{x^3+2}$
	$(4x-16)\sqrt{x^3+2}$
	B. $\frac{(4x-16)\sqrt{x^3+2}}{3x^2}$
	$7x^4 - 40x^3 + 8x - 32$
	C. $2(x^3+2)^{3/2}$
	D. $\frac{-x^4 + 16x^3 + 4x - 16}{2(x^3 + 2)^{3/2}}$
	$\frac{x^4 + 8x^3 + 8x - 32}{2}$
	E. $2(x^3+2)^{3/2}$

14	$f(x) = \frac{3}{2}$
	What values, c, satisfy the Mean Value Theorem for derivatives for $\int \frac{f(x) - x}{x+2}$ on the open interval (0, 3)?
	A. $-2 + \sqrt{10}$
	B. $2 + \sqrt{10}$
	C. $-2 - \sqrt{10}$
	D. 98 E. $-2 \pm \sqrt{10}$
15	$f(x) = \frac{x-3}{x}$
	What is the average value of f(x) on the interval [1, 4]? A. $3-3\ln 4$
	B. $\ln\left(\frac{e}{4}\right)^3$
	B. $\left(\frac{e}{4}\right)$ C. $\left(\frac{e}{4}\right)$ D. $\left(\frac{-\frac{3}{2}}{2}\right)$
	D. $-\frac{3}{2}$
	E. $-\frac{1}{2}$
16	$\int \sqrt{\cot x} \csc^2 x dx$
	$\int_{A.} \frac{2}{3} \sqrt{\cot^3 x} + C$
	$-\frac{2}{2}\sqrt{\cot^3 x}+C$
	$\begin{bmatrix} B, & 3 \\ 3 & \boxed{} \end{bmatrix}$
	$\begin{array}{c} \text{B.} & 0\\ \frac{3}{2}\sqrt{\cot^3 x} + C\\ \text{C.} & \frac{3}{2}\sqrt{\cot^3 x} + C \end{array}$
	$-\frac{3}{2}\sqrt{\cot^3 x}+C$
	D. $\frac{2}{1}$ E. $\frac{1}{2}$ cot ² x + C
	E. $\overline{2}^{\text{cor}}$

17	$\int \frac{2x-5}{\sqrt{4x-x^2}} dx$
	$\sqrt{4} \lambda - \lambda$
	A. $-18\sqrt{4x-x^2} + C$
	B. $-\frac{27}{2}(4x-x^2)^{3/2}+C$
	B. $(2x-5) \arcsin\left(\frac{x-2}{2}\right) + C$ C.
	D. $-2\sqrt{4x-x^2} + \arcsin\left(\frac{x-2}{2}\right) + C$
	$E. \ -2\sqrt{4x-x^2} - \arcsin\left(\frac{x-2}{2}\right) + C$
18	A particle moves along the x-axis such that it's position is modeled by the equation $x(t) = 2t^3 - 5t^2 + 3t + 4$ for all $t \ge 0$. What is the velocity of the particle when its
	acceleration is equal to 0?
	A10 B. $-\frac{7}{6}$ C. $\frac{5}{6}$ D. 3 E. 4
19	This is the graph of $f'(x)$.
	$\frac{1}{\gamma_{z}} + \frac{1}{\gamma_{z}} + \frac{1}{\gamma_{z}}$
	On which of the following intervals is $f(x)$ concave down AND decreasing on the
	entire interval? A. (2, 4) B. (3, 4) C. (5, 7) D. (6, 7) E. (6, 8)
20	The graph of f(x), shown below, consists of a semicircle of radius 2 from $x = -3$ to $x = 1$ and
	$\int_{0}^{1} (f(x) - 2) dx =$
	a line from $x = 1$ to $x = 3$. What is the value of $\frac{3}{3}$
	$ \gamma = F(x) $
	$ \begin{array}{c} & \uparrow \\ A4\pi + 9 \\ B2\pi + 9 \\ B2\pi + 9 \\ C. 2\pi - 9 \\ D. 4\pi - 9 \\ E2\pi + 18 \end{array} $

Name:	School:	Team:

- 21 Free Response:
 - The acceleration of a particle, launched with an initial velocity of 2, moving along the x-axis is given by a(t) = 6t 5 for all $t \ge 0$. At time t = 2, the position of the particle is 8.
 - A. At what times if the particle at rest?
 - B. Write an expression for the position, x(t), of the particle at time t.
 - C. During what time intervals is the particle moving to the right?
 - D. During what times intervals is the particle **<u>speeding up</u>**?

Team Round Questions

Question 1: (3 minutes)

$$\int -6x^2\sqrt{x^3+5}\,dx$$

Question 2: (3 minutes)

 $f(x) = 2xe^{-x}$ On what intervals of x is f decreasing?

Question 3: (3 minutes)

$$f(x) = \begin{cases} 2bx, x < 3\\ ax^2 + 3, x \ge 3 \end{cases}$$

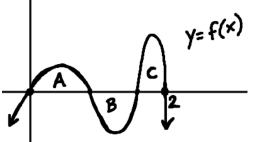
If f(x) is continuous and differentiable for all real numbers, x, what is the value of a - b?

Question 4: (3 minutes)

Given
$$f(x) = \tan^5(5x)$$
, find $f'\left(\frac{\pi}{30}\right)$.

Question 5: (3 minutes)

What is the equation of the line normal to the curve $12x^2 - 4xy^2 = 3x - y^3$ at (1, 3)?


Question 6: (3 minutes)

The derivative, g'(x), and the second derivative, g''(x), of a function, g(x), are continuous and each have exactly two zeros. Selected values of both derivatives are given in the table below.

x	- 4	- 3	- 2	- 1	0	1	2	3	4
g'(x)	- 3	- 2	0	1	2	0	1	3	5
g"(x)	2	0	- 1	- 3	0	2	4	5	6

If the domain of g(x) is the set of all real numbers, on what interval(s) is g(x) BOTH concave up AND decreasing?

Question 7: (3 minutes)

The regions A, B, and C in the figure above are bounded by the graph of the function f

and the x-axis. If the area of each region is 4, what is the value of $\int_{2}^{2} (f(x) - 3) dx$

Question 8: (3 minutes)

A particle moves along the x-axis so that its velocity at time t (where $0 \le t < 2$) is given by $v(t) = \sqrt[3]{t^2 - 6t}$.

Write an expression for the acceleration, a(t), of the particle at time t.

Question 9: (4 minutes)

What are the coordinates of the point on the curve y = 3x - 1 that is closest to (2, 0)?

TIE BREAK QUESTION 1:

$$\int \frac{x}{\sqrt{x+5}} dx =$$

TIE BREAK QUESTION 2:

A particle's velocity is given by the equation $v(t) = 3t^2 - 8t + 5$ What is the total distance traveled by the particle for $0 \le t \le 5$?

<u>TIE BREAK QUESTION 3</u>: $g(x) = 3\pi^4 - \sin \pi + \sqrt[3]{2\pi + e^{3\pi}}$ find g'(x).

TIE BREAK QUESTION 4:

At noon, Car A begins driving due east away from Mathville at a rate of 60mph. One hour later, Car B leaves Calcburg (located 100 miles due north of Mathville) and begins driving due south towards Mathville at a rate of 50mph. How fast is the distance between Car A and Car B changing a 2PM?

TIE BREAK QUESTION 5: $f(x) = \sin^5(e^{3x})$ find f'(x).

Individu	al Exam (Answers)				
1	D				
2	Α				
3	В				
4	E				
5	D				
6	C				
7	E				
8	D				
9	В				
10	D				
11	A				
12	C				
13	E				
14	A				
15	C				
16	В				
17	E				
18	B				
19	D				
20	В				
21FR	$t = \frac{2}{3} \text{ and } t = 1$ $x(t) = t^{3} - \frac{5}{2}t^{2} + 2t + 6$ $B.$				
	A 3 and $t = 1$ B 2				
	$\frac{1}{2} $				
	$\begin{bmatrix} 0,\frac{2}{3} \\ 0 \\ 0 \\ 0 \end{bmatrix} \cup (1,\infty) \qquad \qquad$				
	$\begin{array}{c} x(t) = t^{3} - \frac{5}{2}t^{2} + 2t + 6 \\ x(t) = t^{3} - \frac{5}{2}t^{2} + 2t + 2t + 6 \\ x(t) = t^{3} - \frac{5}{2}t^{3} + 2t + 2$				
Team F	Round (Answers)				
1	$4(3+5)^{3/2}+6$				
	$-\frac{4}{3}(x^3+5)^{3/2}+C$				
2	(1,∞)				
3	-2/3				
4	100 / 27				
5	y-3 = (-1/5)(x - 1) or $y = (-1/5)x + 16/5$				
6	$(-\infty, -3)$				
7	2				
8	$a(t) = \frac{1}{3}(t^2 - 6t)^{-2/3}(2t - 6)$				
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				
9	(1 1)				
	$\left(\frac{1}{2},\frac{1}{2}\right)$				
The Di					
	Tie-Break Round (Answers)—Played at Buzzers				
TB1	$\frac{2}{3}(x+5)^{3/2} - 10\sqrt{x+5} + C$				
	3				
TB2	1358/27				
TB3	0				
TB4	470/13 mph				
TB5	$f'(x) = 5\sin^4(e^{3x})\cos(e^{3x})e^{3x} * 3 = 15e^{3x}\sin^4(e^{3x})\cos(e^{3x})$				