Chapter 6/7 Review

The Chapter 6/7 Exam will consist of a calculator required section (one freeresponse and four multiple-choice) and a non-calculator section (one free-response and four multiple-choice.)

PART 1: Graphing calculator required. (25 minutes)

MC1 Calc When the region enclosed by the graphs of y = x and $y = 4x - x^2$ is revolved about the y-axis, the volume of the solid generated is given by

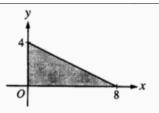
$$(A) \quad \pi \int_0^3 \left(x^3 - 3x^2 \right) dx$$

(B)
$$\pi \int_{0}^{3} \left(x^{2} - \left(4x - x^{2} \right)^{2} \right) dx$$

(C)
$$\pi \int_0^3 (3x - x^2)^2 dx$$

(D) $2\pi \int_0^3 (x^3 - 3x^2) dx$

(D)
$$2\pi \int_{0}^{3} (x^3 - 3x^2) dx$$

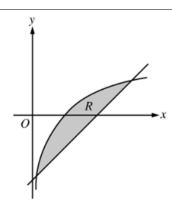

(E)
$$2\pi \int_{0}^{3} (3x^2 - x^3) dx$$

MC2 Calc

Population y grows according to the equation $\frac{dy}{dt} = ky$, where k is a constant and t is measured in years. If the population doubles every 10 years, then the value of k is

- (A) 0.069
- (B) 0.200
- (C) 0.301
- (D) 3.322
- (E) 5.000

MC3 Calc


The base of a solid is a region in the first quadrant bounded by the x-axis, the y-axis, and the line x+2y=8, as shown in the figure above. If cross sections of the solid perpendicular to the x-axis are semicircles, what is the volume of the solid?

- (A) 12.566
- (B) 14.661
- (C) 16.755
- (D) 67.021
- (E) 134.041

MC4 Calc If $0 \le k < \frac{\pi}{2}$ and the area under the curve $y = \cos x$ from x = k to $x = \frac{\pi}{2}$ is 0.1, then $k = \frac{\pi}{2}$

- (A) 1.471
- (B) 1.414
- (C) 1.277
- (D) 1.120
- (E) 0.436

FR5 Calc

Let R be the shaded region bounded by the graph of $y = \ln x$ and the line y = x - 2, as shown above.


- (a) Find the area of R.
- (b) Find the volume of the solid generated when R is rotated about the horizontal line y = -3.
- (c) Write, but do not evaluate, an integral expression that can be used to find the volume of the solid generated when R is rotated about the y-axis.

PART 2: NO CALCULATOR (23 minutes)

FR6 Non-Calc

Consider the differential equation $\frac{dy}{dx} = \frac{1}{2}x + y - 1$.

(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated. (Note: Use the axes provided in the exam booklet.)

- (b) Find $\frac{d^2y}{dx^2}$ in terms of x and y. Describe the region in the xy-plane in which all solution curves to the differential equation are concave up.
- (c) Let y = f(x) be a particular solution to the differential equation with the initial condition f(0) = 1. Does f have a relative minimum, a relative maximum, or neither at x = 0? Justify your answer.
- (d) Find the values of the constants m and b, for which y = mx + b is a solution to the differential equation.

MC7 Non-Calc

What is the volume of the solid generated by rotating about the x-axis the region enclosed by the curve $y = \sec x$ and the lines x = 0, y = 0, and $x = \frac{\pi}{3}$?

- (A) $\frac{\pi}{\sqrt{3}}$
- (B) 7
- (C) π√3
- (D) $\frac{8\pi}{3}$
- (E) $\pi \ln \left(\frac{1}{2} + \sqrt{3}\right)$

MC8
Non-
Calc

The region R in the first quadrant is enclosed by the lines x = 0 and y = 5 and the graph of $y = x^2 + 1$. The volume of the solid generated when R is revolved about the y-axis is

- (A) 6π (B) 8π (C) $\frac{34\pi}{3}$ (D) 16π (E) $\frac{544\pi}{15}$

MC9 Non-Calc

The base of a solid is the region enclosed by the graph of $y = e^{-x}$, the coordinate axes, and the line x = 3. If all plane cross sections perpendicular to the x-axis are squares, then its volume is

- (A) $\frac{\left(1-e^{-6}\right)}{2}$ (B) $\frac{1}{2}e^{-6}$ (C) e^{-6} (D) e^{-3} (E) $1-e^{-3}$

MC10 Non-Calc

Let R be the region in the first quadrant enclosed by the graph of $y = (x+1)^{3}$, the line x = 7, the x-axis, and the y-axis. The volume of the solid generated when R is revolved about the y-axis is given by

- (A) $\pi \int_0^7 (x+1)^{\frac{2}{3}} dx$ (B) $2\pi \int_0^7 x(x+1)^{\frac{1}{3}} dx$ (C) $\pi \int_0^2 (x+1)^{\frac{2}{3}} dx$ (D) $2\pi \int_0^2 x(x+1)^{\frac{1}{3}} dx$ (E) $\pi \int_0^7 (y^3-1)^2 dy$