Chapter 4 Review

Directions: The exam will consist of nine multiple-choice questions and two free-response questions on a variety of topics. All questions will be from released AP examinations. THIS REVIEW has 11 multiple-choice questions and 2 free-response questions (from released AP exams). **THIS IS A NON-CALCULATOR EXAM!!!** You will have 48 minutes for the exam.

EXAM BREAKDOWN:

Questions	Estimated Time
9 Multiple-Choice	18 minutes (2 minutes per question)
2 Free-Response	30 minutes (15 minutes per question)

1	$\int \left(x^3 - 3x\right) dx =$						
	(A) $3x^2 - 3 + C$	(B)	$4x^4 - 6x^2 +$	С		(C)	$\frac{x^4}{3} - 3x^2 + C$
	(D) $\frac{x^4}{4} - 3x + C$	(E)	$\frac{x^4}{4} - \frac{3x^2}{2} + C$	7			
2	If $p(x) = (x+2)(x+k)$ and if the remainder is 12 when $p(x)$ is divided by $x-1$, then $k=$						
	(A) 2 (B) 3	(C)	6	(D)	11	(E)	13
3	$\int_0^8 \frac{dx}{\sqrt{1+x}} =$						
	(A) 1 (B) $\frac{3}{2}$	(C)	2	(D)	4	(E)	6
4	If $\frac{dy}{dx} = \tan x$, then $y =$						
	$(A) \frac{1}{2} \tan^2 x + C$	(B)	$\sec^2 x + C$			(C)	$\ln \left \sec x \right + C$
	(D) $\ln \cos x + C$	(E)	$\sec x \tan x + C$	7			
5	$\int_0^{1/2} \frac{2x}{\sqrt{1 - x^2}} dx =$						
	(A) $1 - \frac{\sqrt{3}}{2}$ (B) $\frac{1}{2} \ln \frac{3}{4}$	(C)	<u>π</u> 6	(D)	$\frac{\pi}{6}$ -1	(E)	$2-\sqrt{3}$

Chapter 4 Review

What is the average (mean) value of $3t^3 - t^2$ over the interval $-1 \le t \le 2$?

- (A) $\frac{11}{4}$ (B) $\frac{7}{2}$ (C) 8
- (D) $\frac{33}{4}$
- (E) 16

- $\int \frac{x^2}{e^{x^3}} dx =$ (A) $-\frac{1}{3} \ln e^{x^3} + C$ (D) $\frac{1}{3} \ln e^{x^3} + C$
 - (B) $-\frac{e^{x^3}}{3} + C$ (E) $\frac{x^3}{3e^{x^3}} + C$

(C) $-\frac{1}{3e^{x^3}} + C$

8 If $\frac{d}{dx}(f(x)) = g(x)$ and $\frac{d}{dx}(g(x)) = f(x^2)$, then $\frac{d^2}{dx^2}(f(x^3)) = g(x)$

- (C) $3x^2g(x^3)$
- (A) $f(x^6)$ (B) $g(x^3)$ (D) $9x^4f(x^6)+6xg(x^3)$ (E) $f(x^6)+g(x^3)$

9 If $f(x) = \int_0^x \frac{1}{\sqrt{t^3 + 2}} dt$, which of the following is FALSE?

- (A) f(0) = 0
- (B) f is continuous at x for all $x \ge 0$.
- (C) f(1) > 0
- (D) $f'(1) = \frac{1}{\sqrt{3}}$

10 For what non-negative value of b is the line given by $y = -\frac{1}{3}x + b$ normal to the curve $y = x^3$?

- (A) 0
- (B) 1

- (C) $\frac{4}{3}$ (D) $\frac{10}{3}$ (E) $\frac{10\sqrt{3}}{3}$

 $\int_{-1}^{2} \frac{|x|}{x} dx$ is

- (A) -3 (B) 1 (C) 2 (D) 3

- (E) nonexistent

- A particle moves along the x-axis in such a way that its acceleration at time t for $t \ge 0$ is given by $a(t) = 4\cos(2t)$. At time t = 0, the velocity of the particle is v(0) = 1 and its position is x(0) = 0.
 - (a) Write an equation for the velocity v(t) of the particle.
 - (b) Write an equation for the position x(t) of the particle.
 - (c) For what values of t, $0 \le t \le \pi$, is the particle at rest?

- Let f be a function such that f''(x) = 6x + 8.
 - (a) Find f(x) if the graph of f is tangent to the line 3x y = 2 at the point (0, -2).
 - (b) Find the average value of f(x) on the closed interval [-1,1].

APAB	S.Hogan					
Chapter 4 Review						