Directions: The exam will consist of 9 multiple-choice questions and 2 free response questions on a variety of topics. All questions will be from released AP examinations. THIS REVIEW also has 18 multiple-choice questions (from a test generator) and 4 free-response questions (from released AP exams). BOTH SECTIONS WILL BE NON-CALCULATOR. (Although you will need a calculator for the review multiple-choice.)

$$h(x) = \sqrt{x+3}$$
 at the point (6, 3).

- A. 1/6
- B. 6
- C. 3
- D. 1/3

E. None of the above

- What is the derivative of $y(x) = -2 \sin x$?
 - A. -2 sin x
 - B. -2 cos x
 - C. 2 cos x
 - D. 2 sin x

E. None of the above

3

What is
$$\frac{d}{dx} [(-3x^2 - 4x + 3)(\sin x)]$$
?

- A. $-3x^2 \sin x 10x \sin x \sin x 3x^2 \cos x 4x \cos x + 3\cos x$
- B. $-6x\sin x 4\sin x 3x^2\cos x 4x\cos x + 3\cos x$
- C. $-3x^2\sin x 10x\sin x \sin x$
- D. $-6x\sin x 4\sin x + 3x^2\cos x 4x\cos x + 3\cos x$

4

If
$$y^4 = -3x^2 + 4x - 4$$
, find $\frac{dy}{dx}$

A.
$$\frac{dy}{dx} = \frac{-6x + 4}{3y}$$

B.
$$\frac{dy}{-} = -6x + 4$$

$$C. \quad \frac{dy}{dx} = \frac{-6x + 4}{y^4}$$

D.
$$\frac{dy}{dx} = \frac{-6x + 4}{4y^3}$$

E. None of the above

5

If
$$2x^2y + 2y^3 = 4$$
, find $\frac{dy}{dx}$

A.
$$\frac{dy}{dx} = \frac{2x^2 + 6y^2}{-4xy}$$

B.
$$\frac{dy}{dx} = 2x^2 + 6y^2$$

C.
$$\frac{dy}{dx} = \frac{-4xy}{2x^2 + 6y^2}$$

D.
$$\frac{dy}{dx} = -4xy$$

E. None of the above

6

Find the equation of the tangent line to $y^4 = 3x^2 - 3x - 5$ going through (-1,-1).

A.
$$y = {}^{-9}/_4 x + {}^{5}/_4$$

B.
$$y = {}^{-9}/_4 x - {}^{5}/_4$$

C.
$$y = {}^{9}/_{4} x - {}^{5}/_{4}$$

D.
$$y = \frac{9}{4}x + \frac{5}{4}$$

7	One train travels east at 150 mph towards Challenge City, while a second train travels south at 160 mph away from Challenge City. At time $t = 0$, the first train is 10 miles west
	and the second train is 80 miles south. Find the rate at which the distance between the trains is changing at time t = 30 minutes.

- A. 91.778 mph
- B. 18.529 mph
- C. 240.013 mph
- D. 78.75 mph

E. None of the above

- A 16 ft ladder leans against a wall. The bottom of the ladder is 2 feet from the wall at time t = 0 and slides away from the wall at a rate of 1 ft/s. Find the velocity of the ladder at time t = 3 seconds.
 - A. 3.04 ft/s
 - B. -3.04 ft/s
 - C. 0.329 ft/s
 - D. -0.329 ft/s

E. None of the above

- Find all critical points of y(x) = 15x + 21.
 - A. $x = -\frac{2}{5}$
 - B. $x = \frac{3}{5}$
 - C. There are no critical points.
 - D. $x = -\frac{7}{5}$

E. None of the above

Find all critical points of $b(x) = \frac{x^2}{4x - x^2}$

- A. $x = \frac{1}{2}$
- B. x = 0
- C. $x = \frac{1}{2}$ and x = 1
- D. x = 1 and x = 0
- E. None of the above

1	1	
-	-	

Find all critical points of $k(x) = -2x^3 - 13x^2 - 8x + 19$.

A.
$$x = -1$$
 and $x = -4$.

B.
$$x = {}^{-1}/_{3}$$
 and $x = -4$.

C.
$$x = {}^{-1}/_{3}$$
 and $x = {}^{-4}/_{3}$.

D.
$$x = -1$$
 and $x = -\frac{4}{3}$.

E. None of the above

12

Given
$$u(x) = \frac{e^x}{x - 2}$$
.

What is u'(x)?

$$xe^{x} - 3e^{x}$$

A.
$$x^2 - 4x + 4$$

$$xe^x - 2e^x + xe^x - 3e^x$$

$$xe^{x} - 2e^{x}$$

$$xe^{x} - 2e^{x} + xe^{x} - 3e^{x}$$

C

$$x^2 - 4x + 4$$

$$xe^{x} - 3e^{x}$$

D.

E. None of the above

13

Find the intervals on which $t(x) = x^3 + 9x^2 + 24x - 2$ is increasing or decreasing.

Increasing: $(-\infty, -4) \cup (-2, \infty)$ A. Decreasing: (-4, -2)

Increasing: [-4,-2]

B. Decreasing: $(-\infty, -4] \cup [-2, \infty)$

Increasing: $(-\infty, -4] \cup [-2, \infty)$

C. Decreasing: [-4,-2]

Increasing: (-4,-2)

D. Decreasing: $(-\infty,-4) \cup (-2,\infty)$

14	Suppose $h(-1) = 0$ and $h(-1) = 44$. Find $p(-1)$ assuming $h'(-1) = 11$.
----	--

- A. p(-1)=55
- B. p(-1)=33
- C. p(-1)=4
- D. p(-1)=484

E. None of the above

- Apply the first derivative test on $q(x) = x^3 3x^2 24x 4$ to find all local maximum and minimums.
 - No Local Maximum or Minimum.
 - B. Local Maximum: x = -2 and x = 4
 - C Local Maximum: x = -2, Local Minimum x = 4
 - D Local Maximum: x = 4, Local Minimum x = -2

E. None of the above

- Find the intervals on which $b(x) = -x^3 + 12x + 4$ is concave up or down.
 - A. Up: (-∞,2] ∪ [-2,∞) and Down: [2,-2]
 - B. Up: (-∞,0) and Down: (0,∞)
 - C. Up: $(-\infty,2) \cup (-2,\infty)$ and Down: (2,-2)
 - D. Up: (0,∞) and Down: (-∞,0)

E. None of the above

- Find all inflection points of $d(x) = 3x^5 15x^4 + 30x^3 30x^2 + 4x 5$.
 - A. x = 1
 - B. There are no inflection points.
 - C. x = -1
 - D. x = 1, x = -1

- Apply the second derivative test on $a(x) = -x^3 6x^2 12x + 3$ to find all local maximum and minimums.
 - A. Local Maximum: x = 2
 - B. Local Minimum: x = 2
 - C. Local Maximum: x = 3
 - D. The test is inconclusive.
 - E. None of the above

1 1996 AB1

Note: This is the graph of the derivative of f, not the graph of f.

The figure above shows the graph of f', the derivative of a function f. The domain of f is the set of all real numbers x such that -3 < x < 5.

- (a) For what values of x does f have a relative maximum? Why?
- (b) For what values of x does f have a relative minimum? Why?
- (c) On what intervals is the graph of f concave upward? Use f' to justify your answer.
- (d) Suppose that f(1) = 0. In the xy-plane provided, draw a sketch that shows the general shape of the graph of the function f on the open interval 0 < x < 2.

2 **1971 AB3**

Consider $f(x) = \cos^2 x + 2\cos x$ over one complete period beginning with x = 0.

- (a) Find all values of x in this period at which f(x) = 0.
- (b) Find all values of x in this period at which the function has a minimum. Justify your answer.
- (c) Over what intervals in this period is the curve concave up?

1984 AB4/BC3

A function f is continuous on the closed interval [-3, 3] such that f(-3) = 4 and f(3) = 1. The functions f' and f'' have the properties given in the table below.

х	-3 < x < -1	x = -1	-1 < x < 1	x = 1	1 <x<3< th=""></x<3<>
f'(x)	Positive	Fails to exist	Negative	0	Negative
f"(x)	Positive	Fails to exist	Positive	0	Negative

- (a) What are the x-coordinates of all absolute maximum and absolute minimum points of f on the interval [-3, 3]? Justify your answer.
- (b) What are the x-coordinates of all points of inflection of f on the interval [-3, 3]? Justify your answer.
- (c) On the axes provided, sketch a graph that satisfies the given properties of f.

1994 AB 1

Let f be the function given by $f(x) = 3x^4 + x^3 - 21x^2$.

- (a) Write an equation of the line tangent to the graph of f at the point (2, -28).
- (b) Find the absolute minimum value of f. Show the analysis that leads to your conclusion.
- (c) Find the x-coordinate of each point of inflection on the graph of f. Show the analysis that leads to your conclusion.